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Abstract
Massless Dirac particles cannot be confined by an electrostatic potential. This is a problem for
making graphene quantum dots but confinement can be achieved with a magnetic field and here
general conditions for confined and deconfined states are derived. There is a class of potentials
for which the character of the state can be controlled at will. Then a confinement–
deconfinement transition occurs which allows the Klein paradox to be probed experimentally in
graphene dots. A dot design suitable for this experiment is presented.

1. Introduction

Single layer graphene is attracting attention because its charge
carriers are massless, relativistic particles [1]. The relativistic
effects result from a unique, zero-gap band structure that
leads to quantum states described by the two-component
Dirac–Weyl equation. This allows relativistic physics to
be explored in a solid state system and has many potential
applications ranging from high frequency electronics [1] to
quantum computing [2]. In particular, graphene quantum dots
are very attractive as spin qubits because they are expected to
have low spin decoherence [2]. However there is a problem
with making graphene dots for quantum computing or any
other application: relativistic effects prevent massless particles
from being confined by an external scalar potential.

This problem results from the Klein paradox [3–6]. When
relativistic particles with mass are incident on a 1D potential
barrier, the state in the barrier decays exponentially unless
the barrier height exceeds the threshold for pair production,
at which point the state in the barrier becomes oscillatory.
The paradox is that any attempt to enhance the localization
by increasing the barrier height eventually destroys it. But
there is no threshold for pair production for massless particles
so exponential decay and bound states do not occur when
graphene is subjected to an external potential.

1 Present address: Department of Materials, Oxford University, Oxford OX1
3PH, UK.

Graphene dots can be formed from external potentials or
nanocrystals but this work is only concerned with external
potentials. The physics of nanocrystals has been discussed
recently [7, 8] and is different from the situation treated here.
The quantum states [9–12], in external potentials are quasi-
bound: they have a low amplitude oscillatory tail and are
similar to the scattering resonances studied in undergraduate
physics. A perpendicular magnetic field enhances the
localization of these states [10] and true bound states can occur
in graphene dots defined by a spatially non-uniform field [11].
So a magnetic vector potential has a localizing effect that tends
to cancel the delocalizing effect of a scalar potential. But what
are the general conditions for confined states to occur when
an electrostatic scalar potential and a magnetic vector potential
are applied to graphene simultaneously?

The aim of the present work is to answer this question
precisely. It is shown that both true bound states and
quasi-bound states occur, depending on the form of the
potentials. In addition, there is a third and most interesting
possibility. In some cases, the character of the states depends
on the parameters of the potentials and can be controlled at
will. A confinement–deconfinement transition then occurs in
which the character of the states changes from oscillatory to
exponential as in the Klein paradox for particles with mass.
This gives a way of probing the Klein paradox experimentally
in a solid state system and numerical studies of the quantum
states in a realistic dot model show it is feasible. Further,
the same effect could be used to fabricate a graphene dot
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which has true bound states. This only requires a uniform
magnetic field and a gate which can be made lithographically,
a geometry which is much easier to fabricate than the non-
uniform magnetic field geometry proposed in [11].

To get more insight into the unique physics of massless,
charged particles, consider the one-dimensional barrier in more
detail. This is treated in a similar way to a potential barrier
for Dirac particles with mass [6] but the lack of mass changes
the physics dramatically. Suppose the particles are constrained
to move along the x-axis and are incident from the left on a
potential barrier at the origin. The potential, V = 0 when
x < 0 and V = U0 when x > 0 and the particle energy E , is
positive with E < U0. The graphene particles are described by
a two-component wavefunction which satisfies

(
V + γ

h̄
σ · p

)
ψ = Eψ, (1)

where σ are the Pauli matrices, p is the momentum and
γ = 646 meV nm [10]. The two-component plane waves
propagating to the right in the direction normal to the barrier
are

ψ =
(

1
1

)
eikx , x < 0,

ψ =
(

1
1

)
eik′x , x > 0,

(2)

where h̄2k2 = E2/c2, h̄2k ′2 = (E − U0)
2/c2 and the particle

speed is c = γ /h̄. The boundary condition at the origin is
that both components of the wavefunction are continuous [6].
This is clearly satisfied without any reflected waves so the
transmission coefficient is 100% and the barrier does not
constrain the motion of the particles.

The fact that the transmission is 100% regardless of E
and U0 is a consequence of the zero mass. If the particles
had mass m0, the energy–momentum relation would be (E −
V )2 − p2c2 = m2

0c4 and the amplitudes of the wavefunction
components in equations (2) would depend on k or k ′ and
m0 [6]. Then the right side amplitude in equations (2) would
be different from the left side amplitude so a reflected wave
would have to be introduced to satisfy the boundary condition
at x = 0 and the transmission coefficient would not be 100%.

Remarkably, classical massless, charged particles can also
penetrate the barrier. When these particles are incident on the
barrier, their momentum changes so that (E − V )2 = p2c2

is always satisfied, however the speed c remains constant.
The resulting trajectories depend on the boundary condition
at x = 0. If the position and velocity are chosen to be
continuous, particles incident from the left penetrate the barrier
and carry on moving to the right with constant speed c. So
the transmission coefficient is 100% as in quantum mechanics.
The lesson to be learnt from this is that the physics of charged
particles which have to keep moving is completely different
from the physics of those that are able to stop.

The effects in two dimensions are even more dramatic
because the velocity vector can change direction continuously
and can be influenced by a magnetic field. This is investigated
here with the aid of a graphene dot model. The system
is cylindrically symmetric and the dot region is defined

by an electrostatic potential, V (r). The magnetic field is
perpendicular to the plane of the dot and the magnetic vector
potential, Aθ (r), is in the azimuthal (θ ) direction. When the
system is treated with quantum mechanics it is found that
the functional form of the potentials has a dramatic effect on
the character of the states. In particular, when V and Aθ
increase as power laws, V = V0r s , Aθ = A0r t , s, t > 0,
the character of the states depends critically on s and t . If
s > t the states oscillate in the asymptotic regime of large
r but decay exponentially when s < t . In both cases the
asymptotic character of the states is independent of V0 and A0

but when s = t the character of the states does depend on
these constants and a transition from exponential to oscillatory
behaviour occurs when V0 is increased or A0 is decreased. This
is the confinement–deconfinement transition which may be the
key to fabricating a graphene quantum dot.

2. Theory of confinement–deconfinement transition

The two-component envelope function, ψ , satisfies equa-
tion (1) with the momentum p replaced by π = p + eA. For
cylindrically symmetric systems the two-component state is

ψ =
(
χ1(r) exp(i(m − 1)θ)
χ2(r) exp(imθ)

)
,

where m is the angular momentum quantum number and the
radial functions χ1 and χ2 satisfy

V

γ
χ1 − i

dχ2

dr
− i

m

r
χ2 − i

e

h̄
Aθχ2 = E

γ
χ1, (3)

−i
dχ1

dr
+ i
(m − 1)

r
χ1 + i

e

h̄
Aθχ1 + V

γ
χ2 = E

γ
χ2. (4)

To analyse the character of the states, a single equation
for χ2 or χ1 is needed. This is found by differentiating
equations (3) and (4) which leads to the relation

χ ′′
2 + a(r)χ ′

2 + b(r)χ2 = 0, (5)

where

a(r) = 1

r
+ 1

E − V

dV

dr
, (6)

b(r) = −m2

r 2
+

(
m

r
+ e

h̄
Aθ

)
1

E − V

dV

dr
− (2m − 1)

r

e

h̄
Aθ

+ e

h̄

dAθ
dr

+ (E − V )2

γ 2
− e2

h̄2
A2
θ . (7)

The first order derivative in equation (5) is eliminated by
putting χ2(r) = u2(r) exp(− ∫

a(r) dr/2) which gives

u′′
2 + k2

2(r)u2 = 0, (8)

where k2
2(r) = b − a′/2 − a2/4. Although k2

2 diverges when
E = V , χ2 is regular there. Since exp(− ∫

a(r) dr/2) is not
an oscillatory function of r , u2 has the same character as χ2.
Equation (8) shows that this character is oscillatory when k2

2
is positive and exponential when k2

2 is negative. Asymptotic
exponential decay is characteristic of a bound state but here
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‘confined’ is used to indicate a bound state that is localized
near the centre of the dot.

When V and Aθ increase as power laws, the asymptotic
form of k2

2 is (V0/γ )
2r 2s − (eA0/h̄)2r 2t . Hence k2

2 is positive
when s > t , leading to oscillatory character and deconfined
states. And k2

2 is negative when s < t , leading to exponential
character and confined states. However if s = t the asymptotic
form is [(V0/γ )

2 − (eA0/h̄)2]r 2t so the sign of k2
2 depends on

V0 and A0 and a confinement–deconfinement transition occurs
when V 2

0 = (γ eA0/h̄)2. This also follows from the uncoupled
equation for χ1: the corresponding k2-value, k2

1 �= k2
2 but

k2
1 → k2

2 in the asymptotic limit so χ1 and χ2 have the same
character.

Just like the 100% transmission of a one-dimensional
barrier, the quantum confinement–deconfinement transition for
a two-dimensional dot has an exact classical analogue and this
takes the form of a change in the character of classical orbits
around the centre of the confining potential. In two dimensions,
the classical energy–momentum relation is c2 p2

r = (E −
V )2 − c2(M/r + eAθ )2, where M is the angular momentum,
r is the radial co-ordinate and pr is the radial component
of the momentum. p2

r is shown in figure 1 for a system
that undergoes a confinement–deconfinement transition. The
classically allowed region is where p2

r � 0 and is delimited
by the roots of p2

r = 0. On the low field side of the transition
(B = 0 and 0.6 T), there are three roots. Bounded classical
motion occurs between the first two (between 14 and 96 nm
at B = 0 T) and this is analogous to elliptic orbits in the
classical Kepler problem. In addition, unbounded motion is
allowed when r exceeds the third root (beyond 121 nm at
B = 0 T) and this is similar to parabolic and hyperbolic orbits
in the classical Kepler problem. But, unlike the Kepler case,
both bounded and unbounded motion are allowed at the same
energy. The unbounded motion corresponds to deconfined
quantum states. However, the third root disappears on the high
field side of the transition (B = 1.2 T) and only bounded
motion occurs, corresponding to confined states. So there
is a change in the allowed classical motion that corresponds
to the quantum confinement–deconfinement transition. The
correspondence is exact because the disappearance of the third
root is connected with a change in the asymptotic sign of p2

r
and in the asymptotic regime p2

r differs from k2 only by a
factor of h̄2, leading to identical conditions for the classical
and quantum transitions.

3. Numerical studies of model states

To investigate the unusual quantum states of a graphene dot
further, equations (3) and (4) are solved numerically and the
objective of these studies is to distinguish confined states from
deconfined states. The Hamiltonian, H , satisfies∫ R

0

∫ 2π

0

[
ψ∗
αHψβ − (Hψα)

∗ψβ
]

dθr dr

= −2π iγ
[
(χ∗

1αχ2β + χ∗
2αχ1β)r

]R

0
, (9)

where ψα and ψβ are two-component states of angular
momentum m and χiα and χiβ are the corresponding radial
functions. Equations (3) and (4) lead to a Hermitian eigenvalue

Figure 1. Classical radial momentum for a system that undergoes a
confinement–deconfinement transition. The system parameters are,
s = 1, corresponding to a linear potential with V0 = 0.5 meV nm−1

and t = 1, corresponding to a uniform magnetic field as indicated in
the figure. The particle energy is 55 meV and the angular momentum
is h̄.

problem when the boundary terms in equation (9) vanish. For
this to happen it is sufficient that one component is regular
at the origin and one component vanishes at the boundary,
R. Then it follows from equations (3) and (4) that both
components are regular at the origin but it does not follow that
both components vanish at R. However a true bound state has
an exponential tail so both components of a bound state vanish
in the limit of large R. Hence confined and deconfined states
can be distinguished by solving equations (3) and (4) subject
to the boundary conditions that one component is regular at the
origin and one component vanishes at R and then looking for
an exponential tail in both components.

Equations (3) and (4) are solved by discretizing them
on a uniform grid. By applying the time reversal operator
to equations (3) and (4) it can be shown that E(m, A0) =
E(1 − m,−A0). It is important to ensure that the eigenvalues
of the discretized Hamiltonian have the same property and
this requires identical numbers of grid points for χ1 and
χ2. This excludes the use of centred differences so d/dr is
approximated by the forward difference operator L f or the
backward difference operator Lb. The procedure depends on
m. When m � 0, χ2(R) is chosen to vanish, L f is used to find
dχ2/dr and Lb to find dχ1/dr and vice versa when m � 1.
Although this guarantees that E(m, A0) = E(1 − m,−A0),
it has the disadvantage that numerical errors are linear in the
step length 	r . To compensate for this, 	r is kept small and
all the eigenvalues computed in this work are accurate to about
1 part in 103, except for s = 2, t = 1 and s = 2, t = 2,
where there are rapid oscillations but the accuracy is still better
than 2%. The discretization leads to a non-Hermitian matrix
eigenvalue problem. A similarity transformation is used to
reduce this to a real, symmetric eigenvalue problem which is
solved numerically.

For brevity, all the quantum states shown in the present
work are m = 1 states. It has been verified that other
states exhibit similar features, although the amplitude of
oscillations is m-dependent [10]. Since the main focus of
this work is on the confinement–deconfinement transition, the
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Figure 2. Confined and deconfined states for cases when no
transition occurs. The frame above each state shows k2

i . Topmost
frame: E(B) for s = 2, t = 1.

states are selected so that the behaviour at the origin does
not change significantly when the potential parameters are
changed. All the states have been selected to have a large
amplitude close to the origin and can be regarded as dot states.
The energies as a function of magnetic field typically show a
series of anti-crossings (figure 2) but in many cases the anti-
crossings disappear at a sufficiently high magnetic field. Where
necessary, the line of anti-crossings is followed to preserve
the qualitative form of the state at the origin. Every energy
computed here is between 26 and 67 meV, within the validity
limit of the linear graphene Hamiltonian (≈±1 eV [1]).

Confined and deconfined states are illustrated in figure 2.
The radial probability distribution, | fi |2 ≡ r |χi |2, i = 1, 2 is
shown together with k2

i . The insets show | fi |2 on a logarithmic
scale. R = 600 nm, large enough to ensure that the asymptotic
sign of k2

i has been reached. The magnetic field, B , is uniform.
When s = 2, t = 1, V0 = 5 × 10−3 meV nm−2, the
asymptotic sign of k2

i is positive and the asymptotic character
of | fi |2 is oscillatory, independent of B . The amplitude of the
oscillations decreases with increasing B . When s = 0.5, t = 1,
V0 = 5 meV nm−1/2 and B �= 0, the asymptotic sign of k2

i is
negative and the asymptotic character of | fi |2 is exponential,
as can be seen from the insets.

The confinement–deconfinement transition is illustrated
in figure 3. R = 600 nm, again large enough to reach the

Figure 3. As figure 2 but for two cases which exhibit a
confinement–deconfinement transition.

asymptotic regime. When s = 1, t = 1, V0 = 0.5 meV nm−1

and B = 0.3 T, the asymptotic sign of k2
i is positive and the

asymptotic character is oscillatory. In contrast, when B =
1.2 T, the asymptotic sign of k2

i is negative and the asymptotic
character is exponential. The transition also occurs in non-
uniform magnetic fields and it may be possible to generate a
suitable field by putting a dot under a superconducting obstacle
in a uniform field. Figure 3 (bottom) shows the transition for
s = 2, t = 2, V0 = 5 × 10−3 meV nm−2, that is parabolic
confinement in a linearly increasing field, B(r) = B0r .

4. Numerical studies of realistic states

In any real quantum dot, the scalar potential would approach
a finite asymptotic value instead of increasing without limit.
Consequently, all the states of a graphene dot in a magnetic
field have an exponential tail. However, an effect similar
to the confinement–deconfinement transition occurs in the
middle distance region between the centre of the dot and the
asymptotic regime.

For this transition to be observable, the dot level has to be
in the region of very low density of states between the bulk
Landau levels. This requires a potential similar to the one
shown in figure 4. The asymptotic value of the potential is
engineered to be just below the dot level. This puts the dot
level between the zeroth and first Landau levels. Thus the dot
level can be isolated from the bulk Landau levels provided that
they are narrow enough.

The required potential can be generated by gate electrodes.
One possible arrangement is a metal plate with a circular
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Figure 4. V (r) for the gate geometry shown in the bottom inset.

hole that contains an electrode. The graphene sheet is above
these electrodes on 300 nm of SiO2 on a back-gate at 0 V.
The plate (−1 V) generates the asymptotically flat part of
the potential, the hole generates the barrier and the central
electrode (−2 V) generates the well. Similar gated, monolayer
graphene nanostructures have been fabricated recently [13].
The potential in figure 4 was computed by solving the Poisson
equation on a discrete mesh. Screening by the graphene
sheet was treated in the Thomas–Fermi approximation [14].
The resulting potential is magnetic field dependent because
the density of states is field dependent. This causes steps
in the potential (inset to figure 4) which occur when the
number of occupied Landau levels changes. However the field
dependence is weak at the low fields considered here.

The confinement–deconfinement transition effect for the
potential in figure 4 and a uniform magnetic field is shown in
figure 5. For all fields, the states have a peak near the centre
of the dot and an exponential tail. The transition occurs in the
middle distance region between these two features, between
about 200 and 400 nm. For any potential, the middle distance
region can be identified by computing k2

i . In figure 5, this
varies rapidly because of the steps in the potential but remains
positive in the middle distance region when B = 0.05 T. At this
field, the oscillations in | fi |2 correspond to those in figure 3 but
are much less rapid because V , hence k2

i is smaller. As the field
increases the region of positive k2

i shrinks and a transition to
exponential behaviour occurs. This is analogous to the change
of character seen in the Klein paradox for relativistic particles
with mass.

The occurrence of the transition is insensitive to the
electrode geometry. The one in figure 4 has the advantage
that the graphene is easy to access but may be difficult to
fabricate. However, similar transitions occur in systems with
disk or spherical central electrodes with the plate and central
electrode either above or below the graphene sheet. In addition,
calculations for model potentials with a well, barrier and flat
portion show that the occurrence of the transition is insensitive
to the model parameters. The only requirement is a region
where k2

i changes sign when A0 increases. This is relatively
easy to arrange.

| fi |2 in figure 5 decreases by 3–4 orders of magnitude at
r ≈ 300 nm when the character of the state changes from
oscillatory to exponential. This large effect could be used to
probe the transition experimentally. For example, the decrease
in | fi |2 causes a decrease in the local density of states (LDOS)
near the dot which could be detected with scanning tunnelling

Figure 5. Confinement–deconfinement transition. As figure 3 but for
the potential shown in figure 4.

microscopy. The decrease in | fi |2 would also cause a large
decrease in the overlap of the dot state with states in contacts
at r ≈ 300 nm. This could be detected by looking for a change
in transport through the dot state via diametrically opposite
contacts at r ≈ 300 nm. Numerical calculations of the LDOS
for the potential in figure 4 show that the state in figure 5
lies in a region of very low bulk density of states, with the
dot state around 0.1–0.2 meV away from any other levels.
This suggests the dot state can be resolved experimentally in
graphene samples of sufficient quality.

5. Conclusion

Confined and deconfined states occur in graphene dots in a
magnetic field. When the vector and scalar potentials increase
with a power law, the states are confined when the scalar
potential rises slowly compared to the vector potential and
deconfined when it rises rapidly. But when the scalar and
vector potentials have the same power law, a confinement–
deconfinement transition occurs. This effect corresponds
exactly to a change in the character of the classical motion and
confined quantum states occur only when unbounded classical
motion is forbidden. When the transition occurs, the character
of the quantum states can be controlled at will by adjusting the
dot parameters and the magnetic field. A similar effect occurs
in a realistic dot model. This is analogous to the relativistic
Klein paradox and could be observed experimentally via
transport studies or STM. Experiments of this kind would give
insight into the unusual physics of classical massless charged
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particles as well as the unique quantum states of a graphene
dot. The proposed system may be attractive because it allows
graphene dots to be formed with well-established lithographic
techniques and only requires a uniform magnetic field.
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